Identification of τ leptons and Standard Model Higgs boson search in $\mu + \tau$ events at The DØ Experiment

Romain MADAR^a

^aService de Physique des Particules CEA Saclay, Irfu/SPP - France

Freiburg Postdoc Seminar

Freiburg, Germany – $10^{\rm th}$ of June 2011

Fundamental interactions

Theory of fundamental interactions

- Gauge invariance known in EM interactions
- Generalised and etablished as a first principle
 - $\bullet~$ full dynamics of the 3 interactions
 - unify EM and weak interaction-

Fundamental interactions

Theory of fundamental interactions

- Gauge invariance known in EM interactions
- Generalised and etablished as a first principle
 - $\bullet~$ full dynamics of the 3 interactions
 - unify EM and weak interaction-

Constraints from EW gauge symmetry

- Gauge invariance not compatible with massive gauge boson : no mass term for bosons
- left-handed and right-handed fermions interacts differently : no mass term for fermions

Fundamental interactions

Theory of fundamental interactions

- Gauge invariance known in EM interactions
- Generalised and etablished as a first principle
 - $\bullet~$ full dynamics of the 3 interactions
 - unify EM and weak interaction-

Constraints from EW gauge symmetry

- Gauge invariance not compatible with massive gauge boson : no mass term for bosons
- left-handed and right-handed fermions interacts differently : no mass term for fermions

To keep benefit from gauge invariance and be compatible with experiments, one needs to dynamically generate masses of particles

Romain Madar (CEA/Irfu/SPP)

Freiburg Seminar - 06/10/2011 3 / 40

Dynamical generation of masses

Dynamical generation of masses

After EWSB

One remnante scalar excitation H, the Higgs boson, of unknown mass \mathfrak{m}_H

 \Longrightarrow Potential signature in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV in Tevatron

 \implies Experimental search strategy?

Search strategy at Tevatron

- benefits from $gg \rightarrow H$ (at low mass H decays mainly in $b\bar{b}$, final state dominated by QCD production of $b\bar{b}$);
- $m_H \approx 165 \text{ GeV} : \mathcal{BR}(H \to WW) \sim 1.$

Search strategy at Tevatron

High mass Higgs boson : $m_H \gtrsim 135 \text{ GeV}$

- benefits from $gg \rightarrow H$ (at low mass H decays mainly in bb, final state dominated by QCD production of $b\bar{b}$);
- $m_H \approx 165 \text{ GeV} : \mathcal{BR}(H \to WW) \sim 1.$

additional sensitivity

According to W decays : relevent final states are $e\mu$, ee, $\mu\mu$, $\mu\tau$, $e\tau$, $\tau\tau$.

gloden signatures

Romain Madar (CEA/Irfu/SPP)

Freiburg Seminar - 06/10/2011 5 / 40

Why τ leptons?

Potential acceptance gain for leptonic final states :

 $(e, \mu) \Rightarrow (e, \mu, \tau)$: single lepton ×1.5, dilepton ×2.0, trilepton ×3.0

• Higgs searches : Many decay chains initiated by Higgs boson (Electroweak Symmetry breaking origin) involve τ leptons and allow to increase the sensitivity.

Why τ leptons?

Potential acceptance gain for leptonic final states :

 $(e, \mu) \Rightarrow (e, \mu, \tau)$: single lepton ×1.5, dilepton ×2.0, trilepton ×3.0

- Higgs searches : Many decay chains initiated by Higgs boson (Electroweak Symmetry breaking origin) involve τ leptons and allow to increase the sensitivity.
- Electroweak physics : Test of lepton universality with $Z \rightarrow \tau \tau$ and $W \rightarrow \tau v_{\tau}$ cross section measurement.
- Top quark physics : top quark property measurements in τ final state are sensitive to new physics and test the Standard Model (SM) consistency.
- New physics : Supersymmetric extensions of SM predict new particles that can preferentially decay in τ leptons. τ final state acts as a probe of new physics.

... But experimentally challenging !

Impact of neutrino(s) involved in τ decay :

- **1** Invisible energy : ν escapes the detector without interaction.
- Visible decay products are soft : more sensitive to backgrounds from multijets processes.

Impact of various τ decay modes :

- leptonic decays (~ 35%) : already included in usual leptonic channels by construction.
- **2** hadronic decays (~ 65%) :
 - different signatures depending on the hadronic final state.
 - ② large bkg from multijets processes in hadronic collisions.

3 Need to combine several channels.

Hadronically decaying τ leptons require sophisticated algorithms to deal with all these difficulties.

General context

The DØ detector

Multi purpose detector : electrons, muons, <u>taus</u>, photons ID, (b-)jets, mET

- 1 General context
- **2** The τ lepton at DØ
- 3 Improvement of τ /jet discrimination
 - Preshower information
 - \bullet Long life time of τ lepton
 - Final result

4 Search for Higgs boson in $\mu + \tau$ events

- Samples and basic selections
- Background modelling
- Signal search and limits
- Fourth fermion generation scenario

Summary

The τ lepton at DØ

Reconstruction of τ lepton

Physical properties : $m_\tau = 1.78~{\rm GeV},\, c\tau_{\rm life} = 87~\mu{\rm m}$

We will focus on hadronic decay of $\tau : \tau_{had}$

Reconstruction and DØ τ type definition for <u>hadronic</u> decay :

- $\bullet \ {\rm D} \ensuremath{\varnothing} \ {\rm type} \ 1 \ \equiv \ 1 \ {\rm trk} \ , \ {\rm CAL} \ {\rm clu} \ \ \sim \tau^\pm \to \pi^\pm \nu_\tau$
- DØ type 2 = 1 trk , CAL clu, EM sub clu ~ $\tau^{\pm} \rightarrow \rho^{\pm} (\rightarrow \pi^0 \pi^{\pm}) \nu_{\tau}$

• DØ type
$$3 \equiv 2$$
 trks, CAL clu

The τ lepton at DØ

Identification of τ lepton

The τ lepton at DØ

Identification of τ lepton

- - track isolation,
 - calo isolation,
 - shower shape,
 - trk-cal correlations.

67% eff. for 1% fake rate

Overview

1 General context

2 The τ lepton at DØ

3 Improvement of τ /jet discrimination

- Preshower information
- \bullet Long life time of τ lepton
- Final result

4 Search for Higgs boson in $\mu + \tau$ events

- Samples and basic selections
- Background modelling
- Signal search and limits
- Fourth fermion generation scenario

5 Summary

Optimization strategy

General point of view : Neural Network output $\eta^{\rm NN}(\vec{X})$ converges to

$$\eta^{\mathrm{true}}(\vec{X}) \equiv rac{\mathcal{S}(\vec{X})}{\mathcal{S}(\vec{X}) + \mathcal{B}(\vec{X})}$$

best discriminating function, related to $\operatorname{Prob}(S|X)$

where $\vec{X} \equiv (x_1, x_2, ..., x_n)$ describes the discriminating variables space.

Optimization strategy

General point of view : Neural Network output $\eta^{\rm NN}(\vec{X})$ converges to

$$\eta^{\rm true}(\vec{X}) \equiv \frac{\mathcal{S}(\vec{X})}{\mathcal{S}(\vec{X}) + \mathcal{B}(\vec{X})} \qquad \begin{array}{c} {\rm best} \\ {\rm tion}, \end{array}$$

best discriminating function, related to $\operatorname{Prob}(S|X)$

where $\vec{X}\equiv(x_1,x_2,...,x_n)$ describes the discriminating variables space.

In the τ identification context :

A lot of ideas were tested to optimize the identification of τ leptons :

- $\bullet\,$ Include preshower detector measurement $\bigstar\,$
- Exploit the long τ life time (like for b-jets) \checkmark
- $\bullet\,$ Tune NN parameters (epoch, nodes, statistics) $\checkmark\,$
- $\bullet\,$ Dedicated training for τ of high $p_T\,\checkmark\,$
- $\bullet\,$ Dedicated training for high luminosity events $\bigstar\,$

 $\stackrel{\rm improve \ \eta^{\rm true}(\vec{X})}{\underset{|\eta^{\rm NN} - \eta^{\rm true}|}{\underset{|\pi^{\rm NN} - \eta^{\rm true}|}}}$

Improvement of τ /jet discrimination

Preshower information

Central PreShower (CPS) for type 2

Physical idea. Exploit specific resonance of τ **type** 2 decay : $\tau^{\pm} \rightarrow \rho^{\pm} \nu \rightarrow \pi^{\pm} \pi^{0} \nu$. Use Central PreShower detector with fine segmentation : $\Delta \phi_{\rm CPS} \simeq 0.1 \times \Delta \phi_{\rm calo}$

 $\text{CPS}_{\rm cluster}\approx\pi^0$, ${\rm trk}\approx\pi^\pm$

Improvement of τ /jet discrimination

Preshower information

Central PreShower (CPS) for type 2

Physical idea. Exploit specific resonance of τ **type** 2 decay : $\tau^{\pm} \rightarrow \rho^{\pm} \nu \rightarrow \pi^{\pm} \pi^{0} \nu$. Use Central PreShower detector with fine segmentation : $\Delta \phi_{\rm CPS} \simeq 0.1 \times \Delta \phi_{\rm calo}$

Improvement of τ /jet discrimination

Preshower information

Central PreShower (CPS) for type 2

Physical idea. Exploit specific resonance of τ **type** 2 decay : $\tau^{\pm} \rightarrow \rho^{\pm} \nu \rightarrow \pi^{\pm} \pi^{0} \nu$. Use Central PreShower detector with fine segmentation : $\Delta \phi_{\rm CPS} \simeq 0.1 \times \Delta \phi_{\rm calo}$

After adding these variables in the NN **No significant improvement** was observed.

Reason : these informations were already included via calorimeter measurement.

Improvement of τ /jet discrimination

Long life time of τ lepton

τ is a long lived particle

Use impact parameter to remove jets faking τ more efficiently. (large $c\tau_{\rm life} \Rightarrow$ large d_0)

Improvement of τ /jet discrimination

Long life time of τ lepton

τ is a long lived particle

Use impact parameter to remove jets faking τ more efficiently. (large $c\tau_{life} \Rightarrow large d_0$)

Improvement of τ /jet discrimination

Long life time of τ lepton

τ is a long lived particle

 $\begin{array}{l} {\rm Use\ impact\ parameter\ to\ remove} \\ {\rm jets\ faking\ \tau\ more\ efficiently.} \\ {\rm (large\ } c\tau_{\rm life} \Rightarrow {\rm large\ } d_0) \end{array}$

After adding these variables in the NN clear improvement was observed :

 $\sim 10\%$ more signal for the same bkg

Improvement of τ /jet discrimination

Final result

Impact of optimizations

Consequences of optimizations : comparison of $S/B(p_T^{\tau_{\rm cand}})$ after a cut

- on NN[whitout opt.] (old NN)
- 2 on NN[with opt.] (new NN)
- 3 ratio of new/old

Improvement of τ /jet discrimination

Final result

Impact of optimizations

Consequences of optimizations : comparison of $S/B(p_T^{\tau_{\rm cand}})$ after a cut

- on NN[whitout opt.] (old NN)
- 2 on NN[with opt.] (new NN)
- 3 ratio of new/old

Optimizations bring ~ 15% improvement on $N(\tau_{\rm true})/N(\tau_{\rm fake})$ ratio

Search for Higgs boson in $\mu + \tau$ events

Overview

- 1 General context
- 2 The τ lepton at DØ
- 3 Improvement of τ /jet discrimination
 - Preshower information
 - Long life time of τ lepton
 - Final result

4 Search for Higgs boson in $\mu + \tau$ events

- Samples and basic selections
- Background modelling
- Signal search and limits
- \bullet Fourth fermion generation scenario

Summary

Tau lepton identification and Higgs boson search at DØ Search for Higgs boson in $\mu+\tau$ events

Samples and basic selections

Data and simulated events

Data : 7.3 fb⁻¹ (2002-2010), event recording based on an inclusive trigger strategy (+30% acceptance compared with muon only based trigger).

Standard Model background : generated by ALPGEN+PYTHIA

- $\bullet~Z/\gamma^*(\to\ell\ell){+\rm jets}:{\rm main~background~at~preselections}$
- $W(\rightarrow \ell \nu)$ +jets ($\Rightarrow \tau_{cand}$) : main background at final selections
- $t\bar{t}$, WW, WZ, ZZ (only Pythia for diboson processes)

• multijet from data driven method.

Signal : generated by Pythia for $115 \leq m_H/{\rm GeV} \leq 200$ by 5 GeV step

- gluon fusion,
- $\bullet\,$ associated productions with W and Z,
- Vector boson fusion.

Main sensitivity : $H \to WW \to \tau \nu \mu \nu$

Analyzed events :

one isolated muon and one "good" τ candidate (i.e. $NN_{\tau}\approx 1)$

Search for Higgs boson in $\mu + \tau$ events

Samples and basic selections

Data understanding

Orthogonality with others searches

- $n_{\rm jets} \leq 1$ for the $\tau \tau j j$ final state
- electron veto for the $H \to WW \to e \mu$ analysis (electons fakes τ type 2)

Search for Higgs boson in $\mu + \tau$ events

Samples and basic selections

Data understanding

Orthogonality with others searches

• $n_{iets} < 1$ for the $\tau \tau j j$ final state

 $\mathcal{M}_{T}^{\min} \equiv \operatorname{Min}[\mathcal{M}_{T}(\tau, \mathbb{E}_{T}) \mathcal{M}_{T}(\mu, \mathbb{E}_{T})]$ $M_{\rm vis} \equiv M_{\rm inv}(\mu, \tau, E_{\rm r})$

• electron veto for the $H \rightarrow WW \rightarrow e\mu$ analysis (electons fakes τ type 2)

Freiburg Seminar - 06/10/2011 19 / 40

Search for Higgs boson in $\mu + \tau$ events

Samples and basic selections

Data understanding

Orthogonality with others searches

• $n_{iets} < 1$ for the $\tau \tau j j$ final state

 $M_{T}^{\min} \equiv \operatorname{Min}[M_{T}(\tau, \mathbb{E}_{T}) M_{T}(\mu, \mathbb{E}_{T})]$ $M_{\rm vis} \equiv M_{\rm inv}(\mu, \tau, E_{\rm r})$

• electron veto for the $H \rightarrow WW \rightarrow e\mu$ analysis (electons fakes τ type 2)

Search for Higgs boson in $\mu + \tau$ events

Samples and basic selections

Data understanding

Orthogonality with others searches

• $n_{\rm jets} \leq 1$ for the $\tau \tau j j$ final state

$$\begin{split} \mathcal{M}_{T}^{\min} &\equiv \mathrm{Min}[\mathcal{M}_{T}(\tau, \not\!\!\!E_{T}) \, \mathcal{M}_{T}(\mu, \not\!\!\!E_{T})] \\ \mathcal{M}_{\mathrm{vis}} &\equiv \mathcal{M}_{\mathrm{inv}}(\mu, \tau, \not\!\!\!E_{T}) \end{split}$$

• electron veto for the $H \rightarrow WW \rightarrow e\mu$ analysis (electons fakes τ type 2)

Tau lepton identification and Higgs boson search at $\mathrm{D} \varnothing$

Search for Higgs boson in $\mu+\tau$ events

Background modelling

Overview

- 1 General context
- **2** The τ lepton at DØ

3 Improvement of τ /jet discrimination

- Preshower information
- Long life time of τ lepton
- Final result

4 Search for Higgs boson in $\mu + \tau$ events

• Samples and basic selections

• Background modelling

- Signal search and limits
- Fourth fermion generation scenario

5 Summary

Search for Higgs boson in $\mu + \tau$ events

Background modelling

W+jets modelling (1/2)

Search for Higgs boson in $\mu + \tau$ events

Background modelling

W+jets modelling (1/2)

- τ fake rate not well modelled by simulation;
- need to be measured in SS data (signal free region);
- need to trust the OS/SS ratio in MC but not well modelled **already** in a signal free region.

Search for Higgs boson in $\mu + \tau$ events

Background modelling

W+jets modelling (1/2)

New approach :

understand the origins of OS/SS NN-dep;

- 2 build a model based on 3 parameters:
- If the model in data.

Result :

 τ fake rate in the signal region is constrained from all the signal free W+jets samples

- τ fake rate not well modelled by simulation:
- need to be measured in SS data (signal free region);
- need to trust the OS/SS ratio in MC but not well modelled **already** in a signal free region.

Search for Higgs boson in $\mu + \tau$ events

Background modelling

W+jets modelling (2/2)

Corrections : model parameters are obtained by a fit in data and used to correct the MC.

Tau lepton identification and Higgs boson search at $D\emptyset$ Search for Higgs boson in $\mu + \tau$ events

Signal search and limits

Overview

- 1 General context
- **2** The τ lepton at DØ

3 Improvement of τ /jet discrimination

- Preshower information
- Long life time of τ lepton
- Final result

4 Search for Higgs boson in $\mu + \tau$ events

- Samples and basic selections
- Background modelling
- Signal search and limits
- Fourth fermion generation scenario

5 Summary

Search for Higgs boson in $\mu + \tau$ events

Signal search and limits

Distribution of the final variable \mathcal{D}_{f}

Main uncertainties summary (%)

source	diboson	Z+jets	W+jets	top	QCD	H(165)
lumi+trigger	8	8	-	8	-	8
cross section	7	4	-	10	-	10
Modelling	1	-	10	-	-	3
QCD	_	-	-	-	20 - 50	-
Lepton ID	5	5	-	5	-	5
EM veto	5	-	-	5	-	5

Search for Higgs boson in $\mu + \tau$ events

Signal search and limits

Limit on $\sigma \times \mathcal{BR} / [\sigma \times \mathcal{BR}]_{SM}$

 $\label{eq:H} \begin{array}{l} H \rightarrow WW \rightarrow \tau \nu \mu \nu ~ \textit{6179-Conf} ~ \mathrm{included} ~ \mathrm{for ~the} ~ \mathbf{first ~time} ~ \mathrm{in} \end{array}$

• DØ combination 6183-Conf

• TeV combination *6184-Conf* presented at Moriond EW 2011

 $\begin{array}{l} \mbox{Preliminary Tevatron limits on} \\ \mbox{SM Higgs boson. Exclusion at} \\ \mbox{95\% CL}: \\ \mbox{158} < m_{\rm H} < 173 \ {\rm GeV/c}^2 \end{array}$

Tau lepton identification and Higgs boson search at $\mathrm{D} \varnothing$

Search for Higgs boson in $\mu + \tau$ events

Fourth fermion generation scenario

Overview

- 1 General context
- **2** The τ lepton at DØ

3 Improvement of τ /jet discrimination

- Preshower information
- Long life time of τ lepton
- Final result

4 Search for Higgs boson in $\mu + \tau$ events

- Samples and basic selections
- Background modelling
- Signal search and limits
- \bullet Fourth fermion generation scenario

Summary

Search for Higgs boson in $\mu + \tau$ events

Fourth fermion generation scenario

Glimpse of fourth generation constraints

Search for Higgs boson in $\mu + \tau$ events

Fourth fermion generation scenario

Impact on Higgs sector and result in 4Gth

Search for Higgs boson in $\mu + \tau$ events

Fourth fermion generation scenario

Impact on Higgs sector and result in 4Gth

Overview

1 General context

2 The τ lepton at DØ

3 Improvement of au/jet discrimination

- Preshower information
- Long life time of τ lepton
- Final result

4) Search for Higgs boson in $\mu + \tau$ events

- Samples and basic selections
- Background modelling
- Signal search and limits
- Fourth fermion generation scenario

Summary

Summary

Summary

PhD started in October 2008

Work on τ leptons

- Reconstruction and identification of τ lepton involved in Electroweak physics, physics beyond SM, Top physics, Higgs searches
- Important impact of an improvement of jet/τ discrimination. 15% relative gain achieved during the first half of my PhD.

Summary

Summary

PhD started in October 2008

Work on τ leptons

- Reconstruction and identification of τ lepton involved in Electroweak physics, physics beyond SM, Top physics, Higgs searches
- Important impact of an improvement of jet/τ discrimination. 15% relative gain achieved during the first half of my PhD.

Work on Higgs boson search in $\mu + \tau$ events

- $\mu + \tau$ channel add sensitivity, included for the first time in TeV comb;
- Background modelisation is tricky, but fairly under control thanks to a dedicated study;
- Interpretation in the SM and in the case of a fourth fermion generation.

Defence planned for September 2011

Romain Madar (CEA/Irfu/SPP)

Freiburg Seminar - 06/10/2011 31 / 40

Summary

BACKUP SLIDES

Discriminating observables for τ idenfication

Which observables?

- Isolation in the tracking system
- Isolation in the calorimeter
- Shower shape variables
- Correlations between tracks and calorimeter objects

Example of input variables and their physical meaning :

Central preshower (CPS)

Physical idea. Exploit specific resonance of τ type 2 decay : $\tau^{\pm} \rightarrow \rho^{\pm} \nu \rightarrow \pi^{\pm} \pi^{0} \nu$. Use Central PreShower detector with fine segmentation : $\Delta \phi_{\rm CPS} \simeq 0.1 \times \Delta \phi_{\rm calo}$

3 layers z, u, v of about 2600 scintillating strips each :

- layer z (or axial) : strips are along the beam axis;
- layer u : strips have an angle of $+23^{\circ}$ with the beam axis;
- layer v : strips have an angle of -23° with the beam axis;

Official DØ reconstruction doesn't allow to access to the cluster size. A dedicated reconstruction for τ lepton idenfication was elaborated.

Central preshower : reconstruction

Schematical view of the elaborated reconstruction :

Onsider correlations between layers (contamination from the event);

3 Combination of the information from the 3 layers z, u, v.

Result : a cluster $\equiv (\eta, \varphi, E, \text{RMS})$ is reconstructed with a resolution comparable to the one of the official reconstruction (algo tested in electrons)

Summary

W+jets modelling (1/3)

New strategy Understand the origin of the NN-dep. of OS/SS, build a model and perform a global fit in data in a signal free region $NN_{\tau} < 0.9$.

• Some elementary processes exhibe correlation between Q_{parton} and $Q_W(=Q_{\mu})$

 $\label{eq:charge correlation between the parton and the reconstructed τ depends on $NN_{\tau}$$

Convolution of these two effects give specific OS/SS dependence with NN_{τ} :

W+jets modelling (2/3)

- $\blacksquare \ W(\rightarrow \mu) + {\rm jets}(\rightarrow \tau)$ composition assumed to have 3 componants :
 - $\tilde{\sigma}_+$: μ and parton of same sign;
 - $\tilde{\sigma}_{-}$: μ and parton of op. sign;
 - $\tilde{\sigma}_0$: neutral parton (gluon).

where $\widetilde{\sigma} \equiv \varepsilon_{type} \, \sigma \, \mathcal{L} ~~({\rm the} \; \tau \; {\rm reco.} \; {\rm efficency} \; \varepsilon \; {\rm can} \; {\rm be} \; {\rm type} \; {\rm dependant})$

The charge correlation have NN dependance (see previous plots). Lets consider <u>3 fake rates</u> according to their charge correlation :

- $\mathcal{F}_+(NN)$: parton reconstructed as a same sign τ ;
- $\mathcal{F}_{-}(NN)$: parton reconstructed as an opposite sign τ ;
- $\mathcal{F}_0(NN)$: gluon reconstructed as a τ .

W+jets modelling (3/3)

 ${\bf Strategy}$: factorize the NN dependances of $N_{\rm OS}$ and $N_{\rm SS}.$ By rewritting previous equations, we have :

$$N_{\rm OS} = F (1 + \rho_0 R_0 + \rho_- R_+)$$
 (1)

$$N_{\rm SS} = F (\rho_{-} + \rho_{0} R_{0} + R_{+})$$
 (2)

where

•
$$F = \mathcal{F}_+ \widetilde{\sigma}_- \text{ fake}(NN\text{-dependent}) + \text{ norm. } \underline{\text{common for OS \& SS}};$$

•
$$\rho_0 = \frac{\mathcal{F}_0}{\mathcal{F}_+}$$
, $\rho_- = \frac{\mathcal{F}_-}{\mathcal{F}_+}$ explain the OS/SS(NN) (NN-dependent);

• $R_+ = \frac{\tilde{\sigma}_+}{\tilde{\sigma}_-}$, $R_0 = \frac{\tilde{\sigma}_0}{\tilde{\sigma}_-}$ fixed by physics and reco. (not NN-dependant).

Method to measure W+jets in DATA

- assumtion : trust $\rho_0(NN)$ and $\rho_-(NN)$ in the MC (ratio of fake)
- $\bullet~{\rm find}~(F_{\rm NN},R_0,R_+)_{\rm MC}$ in MC by fitting distributions ;
- $\bullet~{\rm find}~(F_{\rm NN},R_0,R_+)_{\rm DATA}$ in DATA by fitting distributions;
- Correct the MC set of parameters by the data one

W+jets correction factors

Inclusive trigger approach

