Search for $H \rightarrow \tau_{\ell} \tau_{had}$ in *pp* collisions collected by the ATLAS experiment

Romain Madar

Physikalisches Institut Albert-Ludwigs-Universität, Freiburg – Germany

Marseille seminar 11th of March 2013 – Marseille, France

Romain Madar (Freiburg Universität)

Unified theory of interactions $SU(2)_L \times U(1)_Y \times SU(3)_c$ + Higgs mechanism

Is the Higgs mechanism realized in Nature?

Unified theory of interactions $SU(2)_L \times U(1)_Y \times SU(3)_c$ + Higgs mechanism

Is the Higgs mechanism realized in Nature?

Role of τ -leptons in this discovery context

Understand EWSB with τ :

- Observation of $H \rightarrow \tau \tau$ process? (CMS result)
- Unique test of g_{Hff} ∝ m_f in the fermionic sector (together with H → bb̄ measurement)
- particularly sensitive to VBF
- Polarization studies : access to \mathcal{J}^{CP}

Role of τ -leptons in this discovery context

Understand EWSB with τ :

- Observation of $H \rightarrow \tau \tau$ process? (CMS result)
- Unique test of g_{Hff} ∝ m_f in the fermionic sector (together with H → bb̄ measurement)
- particularly sensitive to VBF
- Polarization studies : access to \mathcal{J}^{CP}

New physics with τ : To be pursued in parallel of the new resonance identification

- SUSY, Larger gauge group (doubly charged Higgs),
- new interaction (Z' search), lepton flavor violation in Z (H?) decay, ...

Role of τ -leptons in this discovery context

Understand EWSB with τ :

- Observation of $H \rightarrow \tau \tau$ process? (CMS result)
- Unique test of g_{Hff} ∝ m_f in the fermionic sector (together with H → bb̄ measurement)
- particularly sensitive to VBF
- Polarization studies : access to \mathcal{J}^{CP}

New physics with au : To be pursued in parallel of the new resonance identification

- SUSY, Larger gauge group (doubly charged Higgs),
- new interaction (Z' search), lepton flavor violation in Z (H?) decay, ...

 τ lepton final states have a key role in undersdanding the SM and beyond !

But experimentally challenging ! Jets contamination very frequent in hadrons collider !

 $\tau_{had} \approx narrower \; jet \; with \; lower \\ track \; multiplicities$

But experimentally challenging ! Jets contamination very frequent in hadrons collider !

 $\tau_{had} \approx narrower jet with lower track multiplicities$

General strategy of $H \rightarrow \tau \tau$ search :

- Each final state has specific backgrounds : dedicated analysis.
- In this seminar, I will mostly focus on $\tau_{\ell} \tau_{had}$ final state.

$au_\ell au_{had}$ final state : signal and background

$\tau_{\ell} \tau_{had}$ final state : signal and background

N

Other processes with this signature : background

Overview

- **1** Object reconstruction : τ lepton and $E_{\rm T}$
- **2** $m_{\tau\tau}$ reconstruction
- 3 Analysis description
- **4** Towards X(125) properties in $\tau \tau$ final state
- **5** Summary and outlooks

The LHC and the ATLAS experiment

Comments:

- $qq' \rightarrow qq'H$: second dominant Higgs production (instead of *VH* for TeV)
- Better σ_H / σ_Z than TeV, "LHC $\approx gg$ collider", $\langle \mu \rangle \sim 20$,
- $\Delta p_T / p_T$ at 50 GeV : ~ 2.7% (tracker) and ~ 2.0% (calo).
- Typical calorimeter segmentation : $\Delta \eta \times \Delta \phi = 0.025 \times 0.025$

Overview

1 Object reconstruction : τ lepton and $E_{\rm T}$

- **2** $m_{\tau\tau}$ reconstruction
- 3 Analysis description
- **4** Towards X(125) properties in au au final state
- 5 Summary and outlooks

Reconstruction of τ lepton in ATLAS

 $\tau_{\rm had}$ candidate is built from the calorimeter $(\pi^{\pm} \text{ and } \pi^0)$ and the tracking system (π^{\pm})

1. Calorimeter object :

- calorimeter cells \rightarrow 3D clusters (topological cluster)
- 2 τ_{calo} is defined as a jet of topo-clusters (anti- k_T algorithm with $\Delta R = 0.4$)

Reconstruction of τ lepton in ATLAS

 $\tau_{\rm had}$ candidate is built from the calorimeter $(\pi^{\pm} \text{ and } \pi^0)$ and the tracking system (π^{\pm})

1. Calorimeter object :

- calorimeter cells \rightarrow 3D clusters (topological cluster)
- 2 τ_{calo} is defined as a jet of topo-clusters (anti- k_T algorithm with $\Delta R = 0.4$)
- 2. Tracks : a track is matched if

Reconstruction of τ lepton in ATLAS

 $\tau_{\rm had}$ candidate is built from the calorimeter (π^{\pm} and π^{0}) and the tracking system (π^{\pm})

1. Calorimeter object :

- calorimeter cells \rightarrow 3D clusters (topological cluster)
- 2 τ_{calo} is defined as a jet of topo-clusters (anti- k_T algorithm with $\Delta R = 0.4$)

Identification of τ lepton in ATLAS

Identification of τ lepton in ATLAS

 τ_{had} -based triggers : $\ell + \tau_{had}$ triggers allow to lower p_T^{ℓ} threshold wrt ℓ triggers

- Level 1 : based on isolated calorimeter deposits
- Level 2 : consider isolated tracks matching the L1 objects
- Event Filter : exploit shower shapes with similar algorithms to offline ID

Energy calibration of au lepton

Why and how?

- $m_{\tau\tau} \propto E_{\tau}$: a wrong scale will lead to shifted mass peak.
- Use the simulation to measure the energy response
- Use data (and MC) to estimate the uncertainty and a potential bias

Energy calibration of au lepton

Why and how?

- $m_{\tau\tau} \propto E_{\tau}$: a wrong scale will lead to shifted mass peak.
- Use the simulation to measure the energy response
- Use data (and MC) to estimate the uncertainty and a potential bias

Neutrinos momentum : Er reconstruction

Neutrinos don't interact with the detector : they are measured using the unbalance of the total transverse momentum.

Neutrinos momentum : Er reconstruction

Neutrinos don't interact with the detector : they are measured using the unbalance of the total transverse momentum.

Calorimeter based :

- Raw : $\vec{\mathbb{E}}_{\mathrm{T}} \equiv -\sum_{\mathrm{cell}} i \vec{E}_{T}^{i}$,
- Corrected for muons (only MIP),
- Corrected for energy scale of each type of object

Keep in mind : $\vec{\mathbb{E}}_{\mathrm{T}} \stackrel{\mathrm{reco}}{=} \left(\sum_{i} \vec{p}_{\nu_{i}} \right)_{\mathrm{T}}$

Neutrinos momentum : Er reconstruction

Neutrinos don't interact with the detector : they are measured using the unbalance of the total transverse momentum.

Calorimeter based :

- Raw : $\vec{\mathbf{E}}_{\mathrm{T}} \equiv -\sum_{\mathrm{cell}} i \vec{E}_{\mathrm{T}}^{i}$,
- Corrected for muons (only MIP),
- Corrected for energy scale of each type of object Keep in mind : $\vec{\mathbf{E}}_{T} \stackrel{\text{reco}}{=} (\sum_{i} \vec{p}_{v_{i}})_{T}$

Comments : sensitive to all the activity in the event (pile up, detector noise, soft radiations, ...).

Some technics are elaborated to reduce pile-up effect on the $\not\!\!\!E_T$ resolution.

Romain Madar (Freiburg Universität)

 $m_{\tau\tau}$ reconstruction

f 1 Object reconstruction : m au lepton and $f E_{\! T}$

- **2** $m_{\tau\tau}$ reconstruction
- 3 Analysis description
- **4** Towards X(125) properties in au au final state
- 5 Summary and outlooks

 $m_{\tau\tau}$ reconstruction

$m_{\tau\tau}$ reconstruction : Missing Mass Calculator

Search for $H \rightarrow \tau_{\ell} \tau_{had}$ in ATLAS

$m_{\tau\tau}$ reconstruction

$m_{\tau\tau}$ reconstruction : Missing Mass Calculator

Search for $H \rightarrow \tau_{\ell} \tau_{had}$ in ATLAS

$m_{\tau\tau}$ reconstruction

$m_{\tau\tau}$ reconstruction : Missing Mass Calculator

= unknown value

- (1) **Perform a scan** over the unknowns, ie choose a config : $q = (d\Phi_1, d\Phi_2, M_{v1}, \text{mET}, p_v/p_t)$
- (2) For each configuration q_i : compute the full invariant mass m_i
- (3) Fill an histogram of m, weighted by w,=PDF(q,), as a product each above PDF
- (4) Final reconstruced mass, MMC, is given by the max of this histogram

Overview

2) $m_{\tau\tau}$ reconstruction

3 Analysis description

4 Towards X(125) properties in au au final state

5 Summary and outlooks

$H ightarrow au_\ell au_{had}$ overview

Background estimation :

- MJ & W+jets[SS] : SS data
- *W*+jets add-on : (corrected) MC
- *Z* : either **data** or (corrected) MC

Categorization : 7 categories based on

- jet multiplicity and lepton flavor
- $p_T(\ell, \tau_{had}, \not \!\!\! E_T)$ and VBF topology
- The VBF category is the priority

$H ightarrow au_\ell au_{ m had}$ overview

Background estimation :

- MJ & W+jets[SS] : SS data
- *W*+jets add-on : (corrected) MC
- *Z* : either **data** or (corrected) MC

Categorization : 7 categories based on

- jet multiplicity and lepton flavor
- $p_T(\ell, \tau_{had}, \not \!\!\! E_T)$ and VBF topology
- The VBF category is the priority

Background modeling : $Z \rightarrow \tau \tau$ and W+jets

$Z \rightarrow \tau \tau$ modeling :

Data driven : τ "embedding" in $Z \rightarrow \mu\mu$ data events

- remove μ deposits and replace by a simulated τ .
- It's data (jets, pile-up, calo noise, soft radiations)
- limited by data statistics

Corrected (filtered) MC :

- goal : more stat in VBF category,
- correct jet topology based on $Z \rightarrow \ell \ell [data]$.

Background modeling : $Z \rightarrow \tau \tau$ and W+jets

$Z \rightarrow \tau \tau$ modeling :

Data driven : τ "embedding" in $Z \rightarrow \mu\mu$ data events

- remove μ deposits and replace by a simulated τ .
- It's data (jets, pile-up, calo noise, soft radiations)
- limited by data statistics

Corrected (filtered) MC :

- goal : more stat in VBF category,
- correct jet topology based on $Z \rightarrow \ell \ell [data]$.

W+jets : corrected MC

- Norm corr factor (k_W) derived for m_T > 70 GeV
- Derived for OS and SS separatly : k^{OS}_W ~ 0.6 and k^{SS}_W ~ 0.8

Background modeling : $Z \rightarrow \tau \tau$ and W+jets

$Z \rightarrow \tau \tau$ modeling :

Data driven : τ "embedding" in $Z \rightarrow \mu\mu$ data events

- remove μ deposits and replace by a simulated τ .
- It's data (jets, pile-up, calo noise, soft radiations)
- limited by data statistics

Corrected (filtered) MC :

- goal : more stat in VBF category,
- correct jet topology based on $Z \rightarrow \ell \ell [data]$.

W+jets : corrected MC

- Norm corr factor (k_W) derived for m_T > 70 GeV
- Derived for OS and SS separatly : *k*^{OS}_W ~ 0.6 and *k*^{SS}_W ~ 0.8

Signal modeling : EW corrections of $qq' \rightarrow qq'H$

Motivations and goal :

- VBF@LO is EW : $\delta_{\text{EW}} \sim \delta_{\text{QCD}}$ (unlike $gg \rightarrow H$)
- σ_{tot} is already QCD+EW NLO : but shape effects of δ_{EW} ?

Signal modeling : EW corrections of $qq' \rightarrow qq'H$

Motivations and goal :

- VBF@LO is EW : $\delta_{\text{EW}} \sim \delta_{\text{QCD}}$ (unlike $gg \rightarrow H$)
- σ_{tot} is already QCD+EW NLO : but shape effects of δ_{EW} ?

At generated level : most affected distribution is p_T^H - <u>HAWK</u>

Signal modeling : EW corrections of $qq' \rightarrow qq'H$

Motivations and goal :

- VBF@LO is EW : $\delta_{\text{EW}} \sim \delta_{\text{QCD}}$ (unlike $gg \rightarrow H$)
- σ_{tot} is already QCD+EW NLO : but shape effects of δ_{EW} ?

At generated level : most affected distribution is p_T^H - <u>HAWK</u>

At reconstructed level :

- negligeable impact, wrt to other exisiting systematics,
- This spectrum distortions should be kept in mind for the future.

Re-optimization of 2011 analysis

The boosted topology : defined by $p_T^H \stackrel{\text{reco}}{=} p_T(\ell, \tau_{\text{had}}, \not E_T) > 100 \text{ GeV}$ ⁵⁰⁰ 1 jet μτ_{had} H+1-jet boosted + et had Boosted 500 -+ Data -- Data − 10 x H(125)→ττ 10 x H(125)→ττ 400 Z→ττ (OS-SS) Z→TT (OS-SS) 400 Others (OS-SS) Others (OS-SS) Same Sign Data Same Sign Data 300 Bkg, uncert, Bkg, uncert. 300 L dt = 4.6 fb⁻¹ L dt = 4.6 fb⁻¹ 200 s = 7 TeV s = 7 TeV 200 ATLAS Preliminar ATLAS Preliminary 100 100 6 100 150 200 250 300 350 400 MMC mass m., [GeV] 100 150 200 250 300 350 400 MMC mass m., [GeV] 50

- better resolution on $m_{\tau\tau}$ for boosted system
- significantly reduce fake τ s
- theo uncert, well under control for p_T^H , unlike n_{iets}
- \sim sensitive as VBF category •

Re-optimization of 2011 analysis

The boosted topology : defined by $p_T^H \stackrel{\text{reco}}{=} p_T(\ell, \tau_{\text{had}}, \not\!\!\!E_T) > 100 \text{ GeV}$ ⁵⁰⁰ 1 jet μτ_{had} H+1-jet boosted + et had Boosted • better resolution on $m_{\tau\tau}$ for 500 - Data Data boosted system 10 x H(125)→ττ 10 x H(125)→τ1 400 Z→TT (OS-SS) Z→TT (OS-SS) 400 Others (OS-SS) Others (OS-SS) Same Sign Data Same Sign Data • significantly reduce fake τ s 300 Bkg, uncert. Bkg, uncert. 300 L dt = 4.6 fb⁻¹ L dt = 4.6 fb⁻¹ theo uncert. well under 200 s = 7 TeV vs = 7 TeV 200 ATLAS Preliminar ATLAS Preliminary control for p_T^H , unlike n_{iets} 100 100 \sim sensitive as VBF category 100 150 200 250 300 350 400 MMC mass m., [GeV] 100 150 200 250 300 350 400 MMC mass m., [GeV] 12_F 35% CL Limit on σ/σ_{SM} ATLAS Preliminary 18 ATI AS - Observed CL, L dt = 4.6 fb⁻¹, \s = 7 TeV Observed CL. 10 Ldt ≈ 4.7 fb⁻¹ --- Expected CL - - Expected CL. $\pm 2\sigma$ 14 ± 2σ s = 7 TeV With other improve-2011 after 2011 before ments: optimizations optimizations $excl = \Delta$ expected sensitivity almost divided by 2!

0100

110 120 130 140 150

120 Romain Madar (Freiburg Universität)

130 140 150

Uncertainty	$H \rightarrow \tau_{\rm lep} \tau_{\rm lep}$	$H \rightarrow \tau_{\rm lep} \tau_{\rm had}$	$H \rightarrow \tau_{\rm had} \tau_{\rm had}$	
		$Z \rightarrow \tau^+ \tau^-$		
Embedding	1-4% (S)	2-4% (S)	1-4% (S)	Mostimpertent
Tau Energy Scale	-	4–15% (S)	3-8% (S)	wost important
Tau Identification	-	4-5%	1-2%	systematic :
Trigger Efficiency	2-4%	2–5%	2-4%	τ energy scale
Normalisation	5%	4% (non-VBF), 16% (VBF)	9-10%	3 , 1
i		Signal		dive et inspe et en
Jet Energy Scale	1-5% (S)	3-9% (S)	2-4% (S)	\rightarrow direct impact on
Tau Energy Scale	-	2–9% (S)	4-6% (S)	final observable (m ₁)
Tau Identification	-	4-5%	10%	
Theory	8-28%	18–23%	3-20%	
Trigger Efficiency	small	small	5%	

Uncertainty	$H \rightarrow \tau_{\rm lep} \tau_{\rm lep}$	$H \rightarrow \tau_{\rm lep} \tau_{\rm had}$	$H \rightarrow \tau_{\rm had} \tau_{\rm had}$	
		$Z \rightarrow \tau^+ \tau^-$		
Embedding	1-4% (S)	2-4% (S)	1-4% (S)	
Tau Energy Scale	-	4–15% (S)	3-8% (S)	Most important
Tau Identification	-	4-5%	1-2%	systematic :
Trigger Efficiency	2-4%	2–5%	2-4%	τ energy scale
Normalisation	5%	4% (non-VBF), 16% (VBF)	9-10%	3 ,
		Signal		
Jet Energy Scale	1-5% (S)	3-9% (S)	2-4% (S)	\rightarrow direct impact on
Tau Energy Scale	-	2–9% (S)	4-6% (S)	final observable (m __)
Tau Identification	-	4-5%	10%	
Theory	8-28%	18–23%	3-20%	
Trigger Efficiency	small	small	5%	

Romain Madar (Freiburg Universität)

Overview

- $oldsymbol{1}$ Object reconstruction : au lepton and $E_{\!
 m T}$
- **2** $m_{\tau\tau}$ reconstruction
- **3** Analysis description
- **4** Towards X(125) properties in $\tau \tau$ final state
 - 5 Summary and outlooks

3 type of property

- O other SM particles couplings constant : observed event rate
- **2** spin : polarization, angular distributions
- **③** CP : angular correlation/distributions

3 type of property

O other SM particles couplings constant : observed event rate

- **2** spin : polarization, angular distributions
- **③** CP : angular correlation/distributions

arXiv:1209.0040, ATLAS-CONF-2012-127

3 type of property

O other SM particles couplings constant : observed event rate

- **2** spin : polarization, angular distributions
- **③** CP : angular correlation/distributions

Search for $H \rightarrow \tau_{\ell} \tau_{had}$ in ATLAS

Towards X(125) properties in $\tau \tau$ final state

Search for $H \rightarrow \tau_{\ell} \tau_{had}$ in ATLAS

Towards X(125) properties in $\tau \tau$ final state

0.25

0.2

0

 $m_{\Phi} = 120 \text{ GeV}$ $p_T^l \ge 20 \text{ GeV}, |\eta_l| \le 2.5$

Romain Madar (Freiburg Universität)

50

0

0

CP even

tagging jets related angles

100

150 ΔΦ_{ii}

Marseille seminar - 11/03/13 23 / 33

<u>3 π</u>

 φ^* (related τ angles)

Overview

- $oldsymbol{1}$ Object reconstruction : au lepton and $E_{\!
 m T}$
- **2** $m_{\tau\tau}$ reconstruction
- **3** Analysis description
- **4** Towards X(125) properties in au au final state
- **5** Summary and outlooks

The τ -lepton final states provide key informations to understand the EWSB mechanism at hadrons colliders

Experimental challenges :

- Hadronic τ highly contaminated by QCD jets,
- Need sophisticated algorithms (for analysis AND trigger),
- Importance of \mathbb{E}_{T} for τ final state.

Search for $H \rightarrow \tau \tau$:

- Essential to test $g_{Hff} \propto m_f$, unique probe of Higgs-lepton couplings,
- Sensible to VBF, test consistency of the Higgs sector structure,
- Possible perspectives for spin/CP.

The τ -lepton final states provide key informations to understand the EWSB mechanism at hadrons colliders

Experimental challenges :

- Hadronic *τ* highly contaminated by QCD jets,
- Need sophisticated algorithms (for analysis AND trigger),
- Importance of \mathbb{E}_{T} for τ final state.

Search for $H \rightarrow \tau \tau$:

- Essential to test $g_{Hff} \propto m_f$, unique probe of Higgs-lepton couplings,
- Sensible to VBF, test consistency of the Higgs sector structure,
- Possible perspectives for spin/CP.

An update of $H \rightarrow \tau \tau$ search with the full dataset and several improvements is to come : stay tuned !

Romain Madar (Freiburg Universität)

Search for $H \rightarrow \tau_{\ell} \tau_{had}$ in ATLAS

Summary and outlooks

Search for $H \rightarrow \tau_{\ell} \tau_{had}$ in ATLAS

Summary and outlooks

Backup slides

7 Te	eV	8 TeV		
VBF Category	Boosted Category	VBF Category	Boosted Category	
$\triangleright p_{\rm T}^{\tau_{\rm had-vis}} > 30 {\rm GeV}$	-	$\triangleright p_{\rm T}^{\tau_{\rm had-vis}} > 30 {\rm GeV}$	$\triangleright p_{\rm T}^{\tau_{\rm had-vis}} > 30 {\rm GeV}$	
$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	$\triangleright E_{T}^{miss} > 20 \text{ GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	
≥ 2 jets	$\triangleright p_{\rm T}^{\rm \hat{H}} > 100 {\rm GeV}$	$\triangleright \ge 2$ jets	$\triangleright p_{\rm T}^{\rm H} > 100 {\rm GeV}$	
▶ $p_T^{j_1}, p_T^{j_2} > 40 \text{ GeV}$	$0 < x_1 < 1$	▷ $p_{\rm T}$ j1 > 40, $p_{\rm T}$ j2 >30 GeV	$> 0 < x_1 < 1$	
$\triangleright \Delta \eta_{jj} > 3.0$	▶ $0.2 < x_2 < 1.2$	$\triangleright \Delta \eta_{jj} > 3.0$	▶ $0.2 < x_2 < 1.2$	
▶ m _{jj} > 500 GeV	▶ Fails VBF	$> m_{jj} > 500 \text{ GeV}$	▹ Fails VBF	
▷ centrality req.	-	▷ centrality req.	-	
$\triangleright \eta_{j1} \times \eta_{j2} < 0$	-	$Piret \eta_{j1} \times \eta_{j2} < 0$	-	
$\triangleright p_{\rm T}^{\rm Total} < 40 { m GeV}$	-	$\triangleright p_{\mathrm{T}}^{\mathrm{Total}} < 30 \mathrm{GeV}$	-	
-	-	$\triangleright p_{\mathrm{T}}^{\ell} > 26 \mathrm{GeV}$	-	
• <i>m</i> _T <50 GeV	• <i>m</i> _T <50 GeV	• <i>m</i> _T <50 GeV	• <i>m</i> _T <50 GeV	
• $\Delta(\Delta R) < 0.8$	• $\Delta(\Delta R) < 0.8$	• $\Delta(\Delta R) < 0.8$	• $\Delta(\Delta R) < 0.8$	
• $\sum \Delta \phi < 3.5$	• $\sum \Delta \phi < 1.6$	• $\sum \Delta \phi < 2.8$	-	
-	-	 b-tagged jet veto 	 b-tagged jet veto 	
1 Jet Category	0 Jet Category	1 Jet Category	0 Jet Category	
▶ ≥ 1 jet, p_T >25 GeV	$\triangleright 0$ jets $p_T > 25$ GeV	▶ \geq 1 jet, $p_{\rm T}$ >30 GeV	$\triangleright 0$ jets $p_T > 30$ GeV	
$\triangleright E_{T}^{miss} > 20 \text{ GeV}$	$\triangleright E_{T}^{miss} > 20 \text{ GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	$\triangleright E_{T}^{miss} > 20 \text{ GeV}$	
Fails VBF, Boosted	▹ Fails Boosted	▹ Fails VBF, Boosted	▹ Fails Boosted	
• m _T <50 GeV	• <i>m</i> _T <30 GeV	• <i>m</i> _T <50 GeV	• m _T <30 GeV	
• $\Delta(\Delta R) < 0.6$	• $\Delta(\Delta R) < 0.5$	• $\Delta(\Delta R) < 0.6$	• $\Delta(\Delta R) < 0.5$	
• $\sum \Delta \phi < 3.5$	• $\sum \Delta \phi < 3.5$	• $\sum \Delta \phi < 3.5$	• $\sum \Delta \phi < 3.5$	
-	• $p_{\rm T}^{\ell} - p_{\rm T}^{\tau} < 0$	-	• $p_{\rm T}^{\ell} - p_{\rm T}^{\tau} < 0$	

$m_{\tau\tau}$ reconstruction and boosted topology

Missing Mass Calculator (MMC) :

- single *v* kinematic unknown
- scan the 4-vector of each ν
- scan $\vec{\mathbb{E}}_{T}$, given its resolution
- compute the most likely mass, according the τ decay ME

(more in backup ...)

Selected parts of possible improvements (1/2)

Problem : τ_{had} ID relies on shower shape variable. If the simulation poorly models them, ϵ_{ID} from simulation might be wrong.

Solution : measure ϵ_{ID} in $Z \rightarrow \tau \tau$ events selected in data ("tag & probe").

Selected parts of possible improvements (1/2)

Problem : τ_{had} ID relies on shower shape variable. If the simulation poorly models them, ϵ_{ID} from simulation might be wrong.

Solution : measure ϵ_{ID} in $Z \rightarrow \tau \tau$ events selected in data ("tag & probe").

But how to go further? undersdand the variable shape

- major impact on physics analysis via MVA signal extraction,
- undersdand correlations between input variables,
- look at different detector regions (fwd VS central).

Cons : not clear if this will lead to a concluding result on the short term. **Pros** : work at a deeper level for a better understanding of τ_{had} .

Selected parts of possible improvements (2/2)

Fast simulation of the calorimeter : to increase the MC statistics

Selected parts of possible improvements (2/2)

Fast simulation of the calorimeter : to increase the MC statistics

Connexion with τ leptons :

- hadrons : important shower fluctuations
- usually averaged in jets (high number of hadrons)
- τ_{had} : low hadrons multiplicity object \rightarrow fluctuations become important

Selected parts of possible improvements (2/2)

Fast simulation of the calorimeter : to increase the MC statistics

Connexion with τ leptons :

- hadrons : important shower fluctuations
- usually averaged in jets (high number of hadrons)
- τ_{had} : low hadrons multiplicity object \rightarrow fluctuations become important

On going work on this :

- particle gun experiment with π : shower at the cells and clusters level
- capure microscopic effects which lead to sizable effects at the reco level
- look at $Z \rightarrow \tau \tau$ events in the same perspective (calo noise, pile-up, ...)

MMC : results and features

Search for $H \rightarrow \tau_{\ell} \tau_{had}$ in ATLAS

Summary and outlooks

ATLAS verus CMS

