How to probe electroweak symmetry breaking mechanism through τ leptons ?

Romain Madar

Physikalisches Institut Albert-Ludwigs-Universität, Freiburg – Germany

Strasbourg seminar

3rd of March 2013 – Strasbourg, France

Romain Madar (Freiburg Universität)

Overview

Introduction and motivations

- 2 Analysis of $p\bar{p}$ collisions recorded by DØ
 - Identification of τ lepton
 - Higgs boson search in $\mu + \tau_{had}$ selected parts
- 3 Analysis of pp collisions recorded by ATLAS
 - On going work on τ lepton identification and modeling
 - Higgs boson search in the $\tau_{\ell} + \tau_{had}$ final state

Physics probed by τ lepton, challenges

Understand electroweak symmetry breaking :

- Observation of $H \rightarrow \tau \tau$ process
- Unique test of $g_{Hf} \propto m_f$ in the fermionic sector (together with $H \rightarrow b\bar{b}$ measurement)
- sensitive probe of vector bosons fusion
- Possibility of polarization studies : access to \mathcal{J}^{CP}

Physics probed by τ lepton, challenges

Understand electroweak symmetry breaking :

- Observation of $H \rightarrow \tau \tau$ process
- Unique test of $g_{Hf} \propto m_f$ in the fermionic sector (together with $H \rightarrow b\bar{b}$ measurement)
- sensitive probe of vector bosons fusion
- Possibility of polarization studies : access to \mathcal{J}^{CP}

And go beyond : SUSY, Larger gauge group (doubly charged Higgs), new interaction (Z' search), lepton universality at the TeV scale, lepton flavor violation in Z(H?) decay

Physics probed by au lepton, challenges

Understand electroweak symmetry breaking :

- Observation of $H \rightarrow \tau \tau$ process
- Unique test of $g_{Hf} \propto m_f$ in the fermionic sector (together with $H \rightarrow b\bar{b}$ measurement)
- sensitive probe of vector bosons fusion
- Possibility of polarization studies : access to \mathcal{J}^{CP}

And go beyond : SUSY, Larger gauge group (doubly charged Higgs), new interaction (Z' search), lepton universality at the TeV scale, lepton flavor violation in Z (H?) decay

But experimentally challenging ! Jets contamination very frequent in hadrons collider !

Analysis of $p\bar{p}$ collisions recorded by DØ

2 Analysis of $p\bar{p}$ collisions recorded by DØ

- Identification of τ lepton
- Higgs boson search in $\mu + \tau_{had}$ selected parts
- Analysis of pp collisions recorded by ATLAS • On going work on τ lepton identification and modeling • Higgs boson search in the $\tau_{\ell} + \tau_{had}$ final state

Analysis of $p\bar{p}$ collisions recorded by DØ

Tevatron and the DØ experiment

Comments:

- $qq \rightarrow VH$: second dominant Higgs production
- Worst σ_H / σ_Z than LHC ($q\bar{q}$ in initial state from $p\bar{p}$), $\langle \mu \rangle \sim 10$,
- $\Delta p_T / p_T$ at 50 GeV : ~ 7% (tracker) and ~ 2.5% (calo).
- Typical calorimeter segmentation : $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$

Analysis of $p\bar{p}$ collisions recorded by DØ

Identification of τ lepton

Identification of τ lepton in DØ

Properties :
$$m_{\tau} = 1.78$$
 GeV, $c\tau_{\text{life}} = 87 \ \mu\text{m}$, $BR_{\tau \to \text{had}} \simeq 65\%$

3 types of signature according to hadrons in the final state

Analysis of $p\bar{p}$ collisions recorded by DØ

Identification of τ lepton

Identification of τ lepton in DØ

Properties : $m_{\tau} = 1.78$ GeV, $c\tau_{\text{life}} = 87 \ \mu\text{m}$, $BR_{\tau \rightarrow \text{had}} \simeq 65\%$

3 types of signature according to hadrons in the final state

Analysis of $p\bar{p}$ collisions recorded by DØ

Identification of τ lepton

Identification of τ lepton in DØ

Properties : $m_{\tau} = 1.78$ GeV, $c\tau_{\text{life}} = 87 \ \mu\text{m}$, $BR_{\tau \rightarrow \text{had}} \simeq 65\%$

Analysis of $p\bar{p}$ collisions recorded by DØ

Identification of τ lepton

Improvement of au lepton identification

General point of view : Neural Network output $\eta^{NN}(\vec{X})$ **converges** to

$$\eta^{\rm true}(\vec{X}) \equiv \frac{\mathcal{S}(\vec{X})}{\mathcal{S}(\vec{X}) + \mathcal{B}(\vec{X})}$$

best discriminating function, related to Prob(S|X)

where $\vec{X} \equiv (x_1, x_2, ..., x_n)$ describes the discriminating variables space.

Analysis of $p\bar{p}$ collisions recorded by DØ

Identification of τ lepton

Improvement of τ lepton identification

General point of view : Neural Network output $\eta^{NN}(\vec{X})$ **converges** to

 $\eta^{\text{true}}(\vec{X}) \equiv \frac{S(\vec{X})}{S(\vec{X}) + B(\vec{X})} \qquad \text{best discriminating function,} \\ \text{related to } \operatorname{Prob}(S|X)$

where $\vec{X} \equiv (x_1, x_2, ..., x_n)$ describes the discriminating variables space.

In the τ identification context :

A lot of ideas were tested to optimize the identification of τ leptons :

- Include preshower detector measurement X
- Exploit the long τ life time (like for b-jets) \checkmark
- Tune NN parameters (epoch, nodes, statistics) ✓
- Dedicated training for τ of high $p_T \checkmark$
- Dedicated training for high luminosity events X

 $X \equiv$ no improvement; $\sqrt{} \equiv$ improvement

improve $\eta^{\text{true}}(\vec{X})$

minimize $|n^{\rm NN} - n^{\rm true}|$

Analysis of $p\bar{p}$ collisions recorded by DØ

Identification of τ lepton

Final improvement on au identification

Final result :

comparaison of $S/B(p_T^{\tau_{\text{cand}}})$ before and after optimisations.

15-30% improvement

Tool used by the collaboration in τ related papers (arXiv :1211.6993, PRD)

Résultats présentés à TAU2010

Analysis of $p\bar{p}$ collisions recorded by DØ

Identification of τ lepton

Final improvement on au identification

Final result :

comparaison of $S/B(p_T^{\tau_{cand}})$ before and after optimisations.

15-30% improvement

Tool used by the collaboration in τ related papers (arXiv:1211.6993, PRD) Résultats présentés à TAU2010

Experimental skills developped during this work on τ lepton identification

- Quite deep experience in multivariate classification,
- Reconstruction of EM energy deposit with scintillating strips detector, in an hadronic environnement (more in backup).
- Get familiar with couple of *b*-tagging algorithms.

Analysis of $p\bar{p}$ collisions recorded by DØ

Higgs boson search in $\mu + \tau_{had}$ - selected parts

Overview

Introduction and motivations

2 Analysis of $p\bar{p}$ collisions recorded by DØ • Identification of τ lepton

• Higgs boson search in $\mu + \tau_{had}$ - selected parts

3 Analysis of pp collisions recorded by ATLAS

• On going work on τ lepton identification and modeling • Higgs boson search in the $\tau_{\ell} + \tau_{had}$ final state

Analysis of $p\bar{p}$ collisions recorded by DØ

Higgs boson search in $\mu + \tau_{had}$ - selected parts

Analysis overview - flash

Motivations (out-of-date) and strategy :

- $H \rightarrow WW \rightarrow \tau \mu$ process allow to complete other $H \rightarrow WW$ channels
- Select events with one τ and one isolated μ (based on trigger mixture),
- Look for an excess of events at high $M(\mu, \tau_{had}, \mathbf{E}_T)$,
- Other variables are combined in a NN to exploit the full kinematic,
- Main background is due to fake $\tau : W(\rightarrow \mu\nu)$ +jets.

Analysis of $p\bar{p}$ collisions recorded by DØ

Higgs boson search in $\mu + \tau_{had}$ - selected parts

Analysis overview - flash

Motivations (out-of-date) and strategy :

- $H \rightarrow WW \rightarrow \tau \mu$ process allow to complete other $H \rightarrow WW$ channels
- Select events with one τ and one isolated μ (based on trigger mixture),
- Look for an excess of events at high $M(\mu, \tau_{had}, \not\!\!\!E_T)$,
- Other variables are combined in a NN to exploit the full kinematic,
- Main background is due to fake $\tau : W(\rightarrow \mu\nu)$ +jets.

Analysis of $p\bar{p}$ collisions recorded by DØ

Higgs boson search in $\mu + \tau_{had}$ - selected parts

Analysis overview - flash

Motivations (out-of-date) and strategy :

- $H \rightarrow WW \rightarrow \tau \mu$ process allow to complete other $H \rightarrow WW$ channels
- Select events with one τ and one isolated μ (based on trigger mixture),
- Look for an excess of events at high $M(\mu, \tau_{had}, \mathbf{E}_T)$,
- Other variables are combined in a NN to exploit the full kinematic,
- Main background is due to fake $\tau : W(\to \mu\nu)$ +jets. How to model it?

Analysis of $p\bar{p}$ collisions recorded by DØ

Higgs boson search in $\mu + \tau_{had}$ - selected parts

W+jets modelling (1/3)

Analysis of $p\bar{p}$ collisions recorded by DØ

Higgs boson search in $\mu + \tau_{had}$ - selected parts

W+jets modelling (1/3)

 scale W+jets in a control region (*ie*. signal free), selected in data (SS or OS low NN_τ)

Analysis of $p\bar{p}$ collisions recorded by DØ

Higgs boson search in $\mu + \tau_{had}$ - selected parts

W+jets modelling (1/3)

- scale W+jets in a control region (*ie*. signal free), selected in data (SS or OS low NN_τ)
- **But** extrapolation in the signal region needs :

$$\left. \frac{OS}{SS} \right|_{MC} (NN_\tau) \ \rightarrow \ well \ modeled \, ?$$

Analysis of $p\bar{p}$ collisions recorded by DØ

Higgs boson search in $\mu + \tau_{\rm had}$ - selected parts

W+jets modelling (1/3)

A new approach is needed :

- **1** understand the NN $_{\tau}$ variation of OS/SS,
- 2 build a model based on 3 parameters,
- it the model on data.

- scale W+jets in a control region (*ie*. signal free), selected in data (SS or OS low NN_τ)
- **But** extrapolation in the signal region needs :

Romain Madar (Freiburg Universität)

Analysis of $p\bar{p}$ collisions recorded by DØ

Higgs boson search in $\mu + \tau_{had}$ - selected parts

W+jets modelling (2/3)

Strategy : Understand the origin of the NN-dep. of OS/SS

- Some elementary processes exhibe correlation between Q_{parton} and $Q_W(=Q_\mu)$
- Charge correlation between the parton and the reconstructed *τ* depends on NN_τ

Analysis of $p\bar{p}$ collisions recorded by DØ

Higgs boson search in $\mu + \tau_{had}$ - selected parts

W+jets modelling (2/3)

Strategy : Understand the origin of the NN-dep. of OS/SS

- Some elementary processes exhibe correlation between Q_{parton} and $Q_W(=Q_\mu)$
- Charge correlation between the parton and the reconstructed *τ* depends on NN_τ

Convolution of these two effects give specific OS/SS dependence with NN_{τ} :

3 possibilities at the generated level :

$$Q_{\mu} \times Q_{\text{parton}} < 0 \text{ (gen OS)}$$

2
$$Q_{\text{parton}} = 0$$
 (gluons)

 $Q_{\mu} \times Q_{\text{parton}} > 0 \text{ (gen SS)}$

Analysis of $p\bar{p}$ collisions recorded by DØ

Higgs boson search in $\mu + \tau_{had}$ - selected parts

W+jets modelling (2/3)

Strategy : Understand the origin of the NN-dep. of OS/SS

- Some elementary processes exhibe correlation between Q_{parton} and $Q_W(=Q_\mu)$
- Charge correlation between the parton and the reconstructed τ depends on NN_τ

Convolution of these two effects give specific OS/SS dependence with NN_{τ} :

3 possibilities at the generated level :

- $Q_{\mu} \times Q_{\text{parton}} < 0 \text{ (gen OS)}$
- **2** $Q_{\text{parton}} = 0$ (gluons)
- $Q_{\mu} \times Q_{\text{parton}} > 0 \text{ (gen SS)}$

Analysis of $p\bar{p}$ collisions recorded by DØ

Higgs boson search in $\mu + \tau_{had}$ - selected parts

```
W+jets modelling (3/3)
```


Model : final prediction will be a "linear combination" of 3 above plots. Roughly : fit the relative contributions - related to q/g fraction in W+jets.

Analysis of $p\bar{p}$ collisions recorded by DØ

Higgs boson search in $\mu + \tau_{had}$ - selected parts

```
W+jets modelling (3/3)
```


Model : final prediction will be a "linear combination" of 3 above plots. Roughly : fit the relative contributions - related to q/g fraction in W+jets.

Analysis of *pp* collisions recorded by ATLAS

Introduction and motivations

2 Analysis of *pp* collisions recorded by DØ
Identification of *τ* lepton
Higgs boson search in *μ* + *τ*_{had} - selected parts

3 Analysis of *pp* collisions recorded by ATLAS

On going work on *τ* lepton identification and modeling
Higgs boson search in the *τ*_ℓ + *τ*_{had} final state

4 Summary and outlooks

Analysis of *pp* collisions recorded by ATLAS

The LHC and ATLAS experiment

Comments:

- $qq' \rightarrow qq'H$: second dominant Higgs production (instead of *VH* for TeV)
- Better σ_H / σ_Z than TeV, "LHC $\approx gg$ collider", $\langle \mu \rangle \sim 20$,
- $\Delta p_T / p_T$ at 50 GeV : ~ 2.7% (tracker) and ~ 2.0% (calo).
- Typical calorimeter segmentation : $\Delta \eta \times \Delta \phi = 0.025 \times 0.025$

Analysis of pp collisions recorded by ATLAS

On going work on τ lepton identification and modeling

Identification of τ lepton in ATLAS

Analysis of pp collisions recorded by ATLAS

On going work on τ lepton identification and modeling

Identification of τ lepton in ATLAS

Pile-up robustness : Tau Jet Vertex Association (TJVA)

For each candidate : take the PV having the highest JVF

Romain Madar (Freiburg Universität)

Analysis of pp collisions recorded by ATLAS

On going work on τ lepton identification and modeling

On going work : modeling of τ_{had}

Problem : τ_{had} ID relies on shower shape variable. If the simulation poorly models them, ϵ_{ID} from simulation might be wrong.

Solution : measure ϵ_{ID} in $Z \rightarrow \tau \tau$ events selected in data ("tag & probe").

Analysis of pp collisions recorded by ATLAS

On going work on τ lepton identification and modeling

On going work : modeling of τ_{had}

Problem : τ_{had} ID relies on shower shape variable. If the simulation poorly models them, ϵ_{ID} from simulation might be wrong.

Solution : measure ϵ_{ID} in $Z \rightarrow \tau \tau$ events selected in data ("tag & probe").

But how to go further? undersdand the variable shape

- major impact on physics analysis via MVA signal extraction,
- undersdand correlations between input variables,
- look at different detector regions (fwd VS central).

Cons : not clear if this will lead to a concluding result on the short term. **Pros** : work at a deeper level for a better understanding of τ_{had} .

Analysis of pp collisions recorded by ATLAS

On going work on τ lepton identification and modeling

On going work : τ_{had} in fast simu (atlfast-II)

Goal and principle : the lack of MC is significant in some of the analysis

Analysis of pp collisions recorded by ATLAS

On going work on τ lepton identification and modeling

On going work : τ_{had} in fast simu (atlfast-II)

Goal and principle : the lack of MC is significant in some of the analysis

Connexion with τ leptons :

- hadrons : important shower fluctuations
- usually averaged in jets (high number of hadrons)
- τ_{had} : low multiplicity object \rightarrow fluctuations become important

Analysis of pp collisions recorded by ATLAS

On going work on τ lepton identification and modeling

On going work : τ_{had} in fast simu (atlfast-II)

Goal and principle : the lack of MC is significant in some of the analysis

Connexion with τ leptons :

- hadrons : important shower fluctuations
- usually averaged in jets (high number of hadrons)
- τ_{had} : low multiplicity object \rightarrow fluctuations become important

On going work on this :

- particle gun experiment with π : shower at the cells and clusters level
- capure microscopic effects which lead to sizable effects at the reco level
- look at $Z \rightarrow \tau \tau$ events in the same perspective (calo noise, pile-up, ...)

Analysis of pp collisions recorded by ATLAS

Higgs boson search in the $\tau_{\ell} + \tau_{had}$ final state

Overview

Introduction and motivations

2 Analysis of $p\bar{p}$ collisions recorded by DØ

- Identification of τ lepton
- Higgs boson search in $\mu + \tau_{had}$ selected parts

3 Analysis of pp collisions recorded by ATLAS • On going work on τ lepton identification and modeling • Higgs boson search in the $\tau_{\ell} + \tau_{had}$ final state

4 Summary and outlooks

Analysis of pp collisions recorded by ATLAS

Higgs boson search in the $\tau_{\ell} + \tau_{had}$ final state

$H ightarrow au_\ell au_{had}$ overview

Background estimation :

- MJ & W+jets[SS] : SS data
- *W*+jets add-on : (corrected) MC
- *Z* : either **data** or (corrected) MC

Categorization: 7 categories based on

- jet multiplicity and lepton flavor
- $p_T(\ell, \tau_{had}, \not \!\!\! E_T)$ and VBF topology
- The VBF category is the priority

Analysis of pp collisions recorded by ATLAS

Higgs boson search in the $\tau_{\ell} + \tau_{had}$ final state

$H ightarrow au_\ell au_{had}$ overview

Background estimation :

- MJ & W+jets[SS] : SS data
- *W*+jets add-on : (corrected) MC
- *Z* : either **data** or (corrected) MC

Categorization : 7 categories based on

- jet multiplicity and lepton flavor
- $p_T(\ell, \tau_{had}, \not \!\!\! E_T)$ and VBF topology
- The VBF category is the priority

Analysis of pp collisions recorded by ATLAS

Higgs boson search in the $\tau_{\ell} + \tau_{had}$ final state

Contributions to the analysis

I was in charge to manage a group of 3 students who have important contributions in the listed items.

- 2011 analysis re-optimization (selections, fake rejection, boosted topology, ...)
- MVA signal extraction : input variables, systematics, limit extraction
- Exploit *τ* decay sub-structure to increase *s/b* potential for spin/CP studies
- Signal modeling : impact of EW corrections on kinematic/acceptance
- Background modeling : τ_{had} modeling in Z CR linked to τID work
- Background modeling : jets modeling in $Z \rightarrow \ell \ell CRs$ crucial for VBF signal extraction
- Statistical treatement : sanity checks of profiling designed a tool used in several analyses
- Orthogonal approach : unbinned fit to extract limit under development

Chosen parts of the analysis to be described :

- $Z \rightarrow \tau \tau$ and W+jets bkg modeling
- EW corrections of $qq' \rightarrow qq'H$

- The boosted topolgy and result of all other optimizations
- Systematic uncertainties and result

Analysis of pp collisions recorded by ATLAS

Higgs boson search in the $\tau_{\ell} + \tau_{had}$ final state

Background modeling : $Z \rightarrow \tau \tau$ and W+jets

$Z \rightarrow \tau \tau$ modeling :

Data driven : τ "embedding" in $Z \rightarrow \mu\mu$ data events

- remove μ deposits and replace by a simulated τ .
- It's data (jets, pile-up, calo noise, soft radiations)
- limited by data statistics

Corrected (filtered) MC :

- goal : more stat in VBF category,
- correct jet topology based on $Z \rightarrow \ell \ell [data]$.

Analysis of pp collisions recorded by ATLAS

Higgs boson search in the $\tau_{\ell} + \tau_{had}$ final state

Background modeling : $Z \rightarrow \tau \tau$ and W+jets

$Z \rightarrow \tau \tau$ modeling :

Data driven : τ "embedding" in $Z \rightarrow \mu \mu$ data events

- remove μ deposits and replace by a simulated τ .
- It's data (jets, pile-up, calo noise, soft radiations)
- limited by data statistics

Corrected (filtered) MC :

- goal : more stat in VBF category,
- correct jet topology based on $Z \rightarrow \ell \ell [data]$.

W+jets : corrected MC

- Norm corr factor (k_W) derived for $m_T > 70$ GeV
- Derived for OS and SS separatly : k^{OS}_W ~ 0.6 and k^{SS}_W ~ 0.8

Analysis of pp collisions recorded by ATLAS

Higgs boson search in the $\tau_{\ell} + \tau_{had}$ final state

Background modeling : $Z \rightarrow \tau \tau$ and W+jets

$Z \rightarrow \tau \tau$ modeling :

Data driven : τ "embedding" in $Z \rightarrow \mu\mu$ data events

- remove μ deposits and replace by a simulated τ .
- It's data (jets, pile-up, calo noise, soft radiations)
- limited by data statistics

Corrected (filtered) MC :

- goal : more stat in VBF category,
- correct jet topology based on $Z \rightarrow \ell \ell [data]$.

W+jets : corrected MC

- Norm corr factor (k_W) derived for m_T > 70 GeV
- Derived for OS and SS separatly : *k*_W^{OS} ~ 0.6 and *k*_W^{SS} ~ 0.8

Analysis of pp collisions recorded by ATLAS

Higgs boson search in the $\tau_{\ell} + \tau_{had}$ final state

Signal modeling : EW corrections of $qq' \rightarrow qq'H$

Motivations and goal :

- VBF@LO is EW : $\delta_{\text{EW}} \sim \delta_{\text{QCD}}$ (unlike $gg \rightarrow H$)
- σ_{tot} is already QCD+EW NLO : but shape effects of δ_{EW} ?

Analysis of pp collisions recorded by ATLAS

Higgs boson search in the $\tau_{\ell} + \tau_{had}$ final state

Signal modeling : EW corrections of $qq' \rightarrow qq'H$

Motivations and goal :

- VBF@LO is EW : $\delta_{\text{EW}} \sim \delta_{\text{QCD}}$ (unlike $gg \rightarrow H$)
- σ_{tot} is already QCD+EW NLO : but shape effects of δ_{EW} ?

At generated level : most affected distribution is p_T^H - <u>HAWK</u>

Analysis of *pp* collisions recorded by ATLAS

Higgs boson search in the $\tau_\ell + \tau_{had}$ final state

Signal modeling : EW corrections of $qq' \rightarrow qq'H$

Motivations and goal :

- VBF@LO is EW : $\delta_{\text{EW}} \sim \delta_{\text{QCD}}$ (unlike $gg \rightarrow H$)
- σ_{tot} is already QCD+EW NLO : but shape effects of δ_{EW} ?

At generated level : most affected distribution is p_T^H - <u>HAWK</u>

At reconstructed level :

- negligeable impact, wrt to other exisiting systematics,
- This spectrum distortions should be kept in mind for the future.

Analysis of pp collisions recorded by ATLAS

Higgs boson search in the $\tau_{\ell} + \tau_{had}$ final state

Re-optimization of 2011 analysis

The boosted topology : defined by $p_T^H \stackrel{\text{reco}}{=} p_T(\ell, \tau_{\text{had}}, \not\!\!\!E_T) > 100 \text{ GeV}$

- better resolution on *m*_{ττ} for boosted system
- significantly reduce fake τs
- theo uncert. well under control for p_T^H , unlike n_{jets}
- \sim sensitive as VBF category

Analysis of pp collisions recorded by ATLAS

Higgs boson search in the $\tau_{\ell} + \tau_{had}$ final state

Re-optimization of 2011 analysis

The boosted topology : defined by $p_T^H \stackrel{\text{reco}}{=} p_T(\ell, \tau_{\text{had}}, \not\!\!\!E_T) > 100 \text{ GeV}$

Romain Madar (Freiburg Universität)

Analysis of *pp* collisions recorded by ATLAS

Higgs boson search in the $\tau_{\ell} + \tau_{had}$ final state

Uncertainty	$H \rightarrow \tau_{\rm lep} \tau_{\rm lep}$	$H \rightarrow \tau_{\rm lep} \tau_{\rm had}$	$H \rightarrow \tau_{\rm had} \tau_{\rm had}$	
		$Z \rightarrow \tau^+ \tau^-$		
Embedding	1-4% (S)	2-4% (S)	1-4% (S)	Mootimportant
Tau Energy Scale	-	4–15% (S)	3-8% (S)	wost important
Tau Identification	-	4-5%	1-2%	systematic :
Trigger Efficiency	2-4%	2–5%	2-4%	τ energy scale
Normalisation	5%	4% (non-VBF), 16% (VBF)	9-10%	,
		Signal		dive et inen e et en
Jet Energy Scale	1-5% (S)	3-9% (S)	2-4% (S)	→ unect impact on
Tau Energy Scale	-	2–9% (S)	4-6% (S)	final observable (m_)
Tau Identification	-	4-5%	10%	
Theory	8-28%	18-23%	3-20%	
Trigger Efficiency	small	small	5%	

Analysis of *pp* collisions recorded by ATLAS

Higgs boson search in the $\tau_{\ell} + \tau_{had}$ final state

Uncertainty	$H \rightarrow \tau_{\rm lep} \tau_{\rm lep}$	$H \rightarrow \tau_{\rm lep} \tau_{\rm had}$	$H \rightarrow \tau_{\rm had} \tau_{\rm had}$	-
		$Z \rightarrow \tau^+ \tau^-$		-
Embedding	1-4% (S)	2-4% (S)	1-4% (S)	Mootimportant
Tau Energy Scale	-	4–15% (S)	3-8% (S)	most important
Tau Identification	-	4-5%	1-2%	systematic :
Trigger Efficiency	2-4%	2–5%	2-4%	τ energy scale
Normalisation	5%	4% (non-VBF), 16% (VBF)	9-10%	····· 3 ,
		Signal		dive et ineme et em
Jet Energy Scale	1-5% (S)	3-9% (S)	2-4% (S)	\rightarrow direct impact on
Tau Energy Scale	-	2–9% (S)	4-6% (S)	final observable (m __
Tau Identification	-	4–5%	10%	
Theory	8-28%	18–23%	3-20%	
Trigger Efficiency	small	small	5%	

Romain Madar (Freiburg Universität)

Overview

Introduction and motivations

- 2 Analysis of *pp* collisions recorded by DØ
 Identification of *τ* lepton
 Higgs boson search in *μ* + *τ*_{had} selected parts
- 3 Analysis of *pp* collisions recorded by ATLAS
 On going work on *τ* lepton identification and modeling
 Higgs boson search in the *τ*_ℓ + *τ*_{had} final state

The τ -lepton final states provide key informations to understand the EWSB mechanism at hadrons colliders

Researches on DØ:

- Improvement of the τ identification of 20%.
- Search for $H \rightarrow WW \rightarrow \tau \mu$, with a good background understanding.
- Deep understanding of jets faking *τ*-leptons in W+jets events.

On going researches on ATLAS :

- Understanding τ_{had} modeling in control region.
- Improving the fast simulation of single pion showers (fluctuations).
- Improving $H \rightarrow \tau \tau$ search by many different aspects.

The τ -lepton final states provide key informations to understand the EWSB mechanism at hadrons colliders

Researches on DØ:

- Improvement of the τ identification of 20%.
- Search for $H \rightarrow WW \rightarrow \tau \mu$, with a good background understanding.
- Deep understanding of jets faking *τ*-leptons in W+jets events.

On going researches on ATLAS :

- Understanding τ_{had} modeling in control region.
- Improving the fast simulation of single pion showers (fluctuations).
- Improving $H \rightarrow \tau \tau$ search by many different aspects.

What is the medium term future?

Measuring *X*(125) properties in the $\tau\tau$ final state (more in backup)!

Summary and outlooks

Backup slides

Does the new resonance behave as the SM Higgs boson?

- should be the quantum of scalar field spin 0 particle.
- should be $\mathcal{J}^{CP} = 0^{++}$ (to avoid pseudo-mass for fermions).
- should have specific couplings $g_{HXX} \propto m_X$.

NO - the new boson doesn't behave like the SM Higgs boson

- What is its nature? Does it come alone?
- Which property is different from prediction ? all information will be valuable
- Search for new physics ! Supersymmetry, extra-dimension, ... ?

YES - the new boson does behave like the SM Higgs boson

- Yes, but at which precision? Mainly the scope of futur e^+e^- collider.
- Mass instability of elementary scalar field : is the new boson elementary ?
- Many open questions : dark matter, neutrinos masses, CP violation ...

One needs new physics!

τ -lepton final states provide either an *exclusive way* or valuable *complementary information* to answer some of these questions.

Romain Madar (Freiburg Universität)

au is a long lived particle

Use impact parameter to remove jets faking τ more efficiently. (large $c\tau_{\text{life}} \Rightarrow \text{large } d_0$)

 $\sim 10\%$ more signal for the same bkg

Le détecteur de pieds de gerbe (CPS)

Idée physique : exploiter les résonances spécifiques de la désintégration des τ (type 2) : $\tau^{\pm} \rightarrow \rho^{\pm} \nu \rightarrow \pi^{\pm} \pi^{0} \nu$. Utiliser la segmentation de ce détecteur, plus fine que celle du calorimètre : $\Delta \phi_{CPS} \simeq 0.1 \times \Delta \phi_{calo}$

Radiateur (Pb) et 3 couches z, u, v d'environ 2600 bandes scintillantes chacunes :

- couche z (ou axiale) : les bandes sont dirigées suivant l'axe du faisceau,
- couche u : les bandes font un angle de +23° avec la couche z,
- couche v : les bandes font un angle de -23° avec la couche z.

Reconstruction officielle de DØ : un dépôt CPS est reconstruit pour 85% des candidats τ et pas d'accès à l'extension transverse du dépôt. Développement d'une reconstruction dédiée à l'identification des τ .

Détecteur de pieds de gerbe : reconstruction

• Pour chaque couche, on cherche un dépôt d'énergie au voisinage de la trace du candidat ($\approx \pi^{\pm}$).

Corrélations entre les couches : élimination des dépôts parasites

Les informations des 3 couches z, u, v sont combinées entre elles.

Résultat : un dépôt d'énergie $\equiv (\eta, \phi, E, \text{RMS})$ est reconstruit pour 95% des candidats

Romain Madar (Freiburg Universität)

Détecteur de pieds de gerbe : résultats

$$CPS_{
m cluster} pprox \gamma\gamma\left[\pi^{0}
ight]$$
 , ${
m trk} pprox \pi^{\pm}$

Observables:

- angle(dépôt CPS,trace)
- taille du dépôt CPS
- rapport de l'énergie calo et CPS

Après ajout de ces observables dans le NN, aucune amélioration significative n'a été observée.

Raison : ces informations sont fortement corrélées à celles du calorimètre.

Prise en compte de la cinématique

W+jets modelling (2/3)

• $W(\rightarrow \mu)$ +jets $(\rightarrow \tau)$ composition assumed to have 3 componants :

- $\tilde{\sigma}_+$: μ and parton of same sign ;
- $\tilde{\sigma}_{-}$: μ and parton of op. sign ;
- $\tilde{\sigma}_0$: neutral parton (gluon).needs each

where $\tilde{\sigma} \equiv \epsilon_{\text{type}} \sigma \mathcal{L}$ (the τ reco. efficency ϵ can be type dependant)

The charge correlation have NN dependance (see previous plots). Lets consider <u>3 fake rates</u> according to their charge correlation :

- $\mathcal{F}_+(NN)$: parton reconstructed as a same sign τ ;
- $\mathcal{F}_{-}(NN)$: parton reconstructed as an opposite sign τ ;
- $\mathcal{F}_0(NN)$: gluon reconstructed as a τ .

W+jets modelling (3/3)

Strategy : factorize the NN dependances of N_{OS} and N_{SS} . By rewritting previous equations, we have :

$$N_{\rm OS} = F (1 + \rho_0 R_0 + \rho_- R_+)$$
 (1)

$$N_{\rm SS} = F \left(\rho_{-} + \rho_0 R_0 + R_+ \right)$$
 (2)

where

- $F = \mathcal{F}_+ \tilde{\sigma}_-$ fake(NN-dependent) + norm. <u>common for OS & SS</u>;
- $\rho_0 = \frac{\mathcal{F}_0}{\mathcal{F}_+}$, $\rho_- = \frac{\mathcal{F}_-}{\mathcal{F}_+}$ explain the OS/SS(NN) (NN-dependent);
- $R_+ = \frac{\tilde{\sigma}_+}{\tilde{\sigma}_-}$, $R_0 = \frac{\tilde{\sigma}_0}{\tilde{\sigma}_-}$ fixed by physics and reco. (not NN-dependant).

Method to measure *W*+jets in DATA

- assumtion : trust $\rho_0(NN)$ and $\rho_-(NN)$ in the MC (ratio of fake)
- find $(F_{NN}, R_0, R_+)_{MC}$ in MC by fitting distributions;
- find $(F_{NN}, R_0, R_+)_{DATA}$ in DATA by fitting distributions;
- Correct the MC set of parameters by the data one

Strategy and challenges

- Each final state has specific backgrounds : dedicated analysis.
- Bump in $m_{\tau\tau}$ above the irreducible background $Z \rightarrow \tau\tau$.

Main challenges of the $H \rightarrow \tau \tau$ search :

- Rejection (and modeling) of jet $\rightarrow \tau_{had}$ backgrounds,
- *m*_{ττ} reconstruction with **E**_T (because of escaping ν('s))

 - 2 E_T is measured from the entire calorimeter : poor resolution.

I will mostly focus on $\tau_{\ell}\tau_{had}$ final state in the next slides.

Summary and outlooks

7 Te	eV	8 TeV		
VBF Category	Boosted Category	VBF Category	Boosted Category	
$\triangleright p_{\rm T}^{\tau_{\rm had-vis}} > 30 {\rm GeV}$	-	$\triangleright p_{\rm T}^{\tau_{\rm had-vis}} > 30 {\rm GeV}$	$\triangleright p_{\rm T}^{\tau_{\rm had-vis}} > 30 {\rm GeV}$	
$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	$\triangleright E_{T}^{miss} > 20 \text{ GeV}$	$\triangleright E_{T}^{miss} > 20 \text{ GeV}$	$\triangleright E_{T}^{miss} > 20 \text{ GeV}$	
≥ 2 jets	$\triangleright p_{\rm T}^{\rm H} > 100 {\rm GeV}$	$\triangleright \ge 2$ jets	$\triangleright p_{\rm T}^{\rm H} > 100 {\rm GeV}$	
▶ $p_{\rm T}^{j1}$, $p_{\rm T}^{j2} > 40 {\rm GeV}$	$> 0 < x_1 < 1$	$P_T p_T^{j_1} > 40, p_T^{j_2} > 30 \text{ GeV}$	$> 0 < x_1 < 1$	
$\blacktriangleright \Delta \eta_{jj} > 3.0$	▶ $0.2 < x_2 < 1.2$	$\triangleright \Delta \eta_{jj} > 3.0$	▶ $0.2 < x_2 < 1.2$	
$ m_{jj} > 500 \text{ GeV} $	▹ Fails VBF	$\triangleright m_{jj} > 500 \text{ GeV}$	▹ Fails VBF	
▷ centrality req.	-	▷ centrality req.	-	
$\triangleright \eta_{j1} \times \eta_{j2} < 0$	-	$P \eta_{j1} \times \eta_{j2} < 0$	-	
$\triangleright p_{\rm T}^{\rm Total} < 40 { m GeV}$	-	$\triangleright p_{\rm T}^{\rm Total} < 30 {\rm GeV}$	-	
-	-	$\triangleright p_{\mathrm{T}}^{\ell} > 26 \mathrm{GeV}$	-	
• <i>m</i> _T <50 GeV	• <i>m</i> _T <50 GeV	• <i>m</i> _T <50 GeV	• m _T <50 GeV	
• $\Delta(\Delta R) < 0.8$	• $\Delta(\Delta R) < 0.8$	• $\Delta(\Delta R) < 0.8$	• $\Delta(\Delta R) < 0.8$	
• $\sum \Delta \phi < 3.5$	• $\sum \Delta \phi < 1.6$	• $\sum \Delta \phi < 2.8$	-	
_	-	 b-tagged jet veto 	 b-tagged jet veto 	
1 Jet Category	0 Jet Category	1 Jet Category	0 Jet Category	
▶ ≥ 1 jet, p_T >25 GeV	$\triangleright 0$ jets $p_T > 25$ GeV	▶ \geq 1 jet, $p_{\rm T}$ >30 GeV	$\triangleright 0$ jets $p_T > 30$ GeV	
$\triangleright E_{T}^{miss} > 20 \text{ GeV}$	$\triangleright E_{T}^{miss} > 20 \text{ GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	$\triangleright E_{T}^{miss} > 20 \text{ GeV}$	
Fails VBF, Boosted	▹ Fails Boosted	▹ Fails VBF, Boosted	▹ Fails Boosted	
• m _T <50 GeV	• <i>m</i> _T <30 GeV	• <i>m</i> _T <50 GeV	• m _T <30 GeV	
• $\Delta(\Delta R) < 0.6$	• $\Delta(\Delta R) < 0.5$	• $\Delta(\Delta R) < 0.6$	• $\Delta(\Delta R) < 0.5$	
• $\sum \Delta \phi < 3.5$	• $\sum \Delta \phi < 3.5$	• $\sum \Delta \phi < 3.5$	• $\sum \Delta \phi < 3.5$	
-	• $p_{\rm T}^{\ell} - p_{\rm T}^{\tau} < 0$	-	• $p_{\mathrm{T}}^{\ell} - p_{\mathrm{T}}^{\tau} < 0$	

$m_{\tau\tau}$ reconstruction

(3) Fill an histogram of m, weighted by w,=PDF(q,), as a product each above PDF

(4) Final reconstruced mass, MMC, is given by the max of this histogram

$m_{\tau\tau}$ reconstruction and boosted topology

Missing Mass Calculator (MMC) :

- single *v* kinematic unknown
- scan the 4-vector of each ν
- scan \vec{E}_T , given its resolution
- compute the most likely mass, according the τ decay ME

(more in backup ...)

The boosted topology : defined by $p_T^H \stackrel{\text{reco}}{=} p_T(\ell, \tau_{\text{had}}, E_T) > 100 \text{ GeV}$

- better resolution on m_{ττ} for boosted system
- significantly reduce fake τ s
- theo uncert. well under control for p^H_T, unlike n_{jets}
- ullet ~ sensitive as VBF category

Total improvement after all optimizations

Expected sensitivity almost divided by 2 for the same dataset!

Main optimizations :

- Introduction of boosted category
- Optimize cuts of VBF category $(p_T^j, \Delta \eta_{jj}, m_{jj})$
- Improve the fake suppression (with $|d\phi(\ell, \mathbf{E}_T)| + |d\phi(\tau_{had}, \mathbf{E}_T)|$, $p_T^{\ell} p_T^{\tau_{had}}$, ...)

3 type of property

- O other SM particles couplings constant : observed event rate
- **2** spin : polarization, angular distributions
- **③** CP : angular correlation/distributions

Summary and outlooks

 φ^* (related τ angles)