Exercises for Advanced Particle Physics - Winter term 2013/14 Exercise sheet No. III

Prof. Karl Jakobs, Dr. Romain Madar, Claudia Giuliani

The solutions have to be returned to mail box no. 1 in the foyer of the Gustav-Mie-House before Monday, November 18th, 12:00h.

Spin-1/2 particle description : the Dirac equation (10 points)

The simple reasoning to obtain the Schrödinger equation from classical mechanics leads to some paradoxes when extrapolated to a relativistic regime. A better description of relativistic electrons is given by the Dirac equation and these exercises try to illustrate a few of its important properties.

Exercise No. 1 : Free solutions of the Dirac equation (3 points)

For any linear equation, every motion can be decomposed as a linear combination of plane waves. The set of solution for any plane wave provide a complete basis of every possible motions for the Dirac equation

$$(i\gamma^{\mu}\partial_{\mu} - m)\psi(x) = 0 \tag{1}$$

where x denotes a space-time point (t, \vec{x}) , ψ is a four-components object (made of two spinors¹) and γ_{μ} are (4×4) matrices defined by (I denotes the unity (2×2) matrix, and σ_i are the Pauli matrix²):

$$\gamma_0 = \begin{pmatrix} I & 0\\ 0 & -I \end{pmatrix} , \quad \gamma_i = \begin{pmatrix} 0 & \sigma_i\\ -\sigma_i & 0 \end{pmatrix} , \quad i \equiv 1, 2, 3$$
(2)

- 1. Compute the Dirac equation solution for an electron at rest. Interpret the four solutions.
- 2. Using the Lorentz transformation of a bi-spinor under a boost \vec{v} along the x_1 -axis

$$\psi' = S\psi$$
, $S = \left(\sqrt{\frac{\gamma+1}{2}} I_{4\times4} - \operatorname{sign}(\vec{v}\cdot\vec{x}_1) \sqrt{\frac{\gamma-1}{2}} \gamma_0\gamma_1\right)$, $\gamma = \frac{1}{\sqrt{1-v^2/c^2}}$ (3)

compute the solution for an electron with momentum $\vec{p} = (p, 0, 0)$. Is it consistent with the general solution presented in the lecture? Hint: you can start with the solution of an electron at rest, obtained at the previous question.

¹A spinor is a two-component object which "behaves well" under the rotation, *ie.* respecting the properties of the rotation group. We talk about a *group representation* of dimension 2 (1D=scalar, 3D=vector, etc ...)

²These matrices describes how a rotation will change a spinor. Their properties are unrelated to their (2×2) size, but rather to the *rotation group itself*. For example, 3×3 rotation matrices have the exact same properties.

Exercise No. 2 : Few invariants built on Dirac bi-spinors

Finding invariant quantities under simple transformations is crucial to build meaningful theories. If a phenomenon is invariant under rotation, a proper equation cannot include only r_x but must involve (r_x, r_y, r_z) in a well defined combination (respecting rotations). This exercise discusses two important invariants which can be constructed out of the four-component object ψ .

- 1. Show that the number $\psi^{\dagger}\psi$ is not invariant under a Lorentz transformation (use equation (3)). However, is the number $\bar{\psi}\psi$ invariant, where $\bar{\psi} \equiv \psi^{\dagger}\gamma_0$?
- 2. Using the general property of S (defined by $\psi' = S\psi$)

$$S^{-1}\gamma^{\mu}S = \Lambda^{\mu}_{\ \nu}\gamma^{\nu},\tag{4}$$

show that the quantity $j^{\mu} \equiv \bar{\psi} \gamma^{\mu} \psi$ is a 4-vector.

Exercise No. 3 : Non relativistic limit of the Dirac equation (5 points)

Consider this form of the Dirac Equation:

$$\begin{pmatrix} m & \vec{\sigma} \cdot \vec{p} \\ \vec{\sigma} \cdot \vec{p} & -m \end{pmatrix} \psi = i\partial_t \psi, \tag{5}$$

and a non-relativistic electron travelling at speed $v \ll 1$ represented by $\psi = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}$ where ψ_1 and ψ_2 are spinors.

1. If there is an electromagnetic field $A^{\mu} = (A^{0}, \vec{A})$, the dynamic of an electron is described by the Dirac equation where $\vec{p} \to \vec{p} + e\vec{A}$ and $E \to E + eA^{0}$. By searching for stationnary solutions $\psi = e^{-iEt} \begin{pmatrix} \psi_{A} \\ \psi_{B} \end{pmatrix}$, show that ψ_{A} fulfills $\left(\frac{1}{2m} \left(\vec{\sigma} \cdot (\vec{p} + e\vec{A})\right)^{2} - eA^{0}\right) \psi_{A} = E_{\mathrm{kin}}\psi_{A}$ (6)

where $E_{\rm kin}$ is the kinetic energy of the electron. What can you say about ψ_B ? Discuss the result. Hints: why can you assume $|eA^0| \ll m$ and $E_{\rm kin} \ll m$?

2. Using $\vec{B} = \vec{\nabla} \times \vec{A}$ and $\vec{E} = -\partial_t \vec{A} - \vec{\nabla} A^0$, show that ψ_A fulfills the Pauli equation:

$$\left(\frac{1}{2m}(\vec{p}+e\vec{A})^2 + \frac{e}{2m}\vec{\sigma}\cdot\vec{B} - eA^0\right)\psi_A = E_{\rm kin}\psi_A,\tag{7}$$

and derive the gyromagnetic ratio g (or Landé g-factor) of the electron, define by:

$$\vec{\mu} \equiv -g \frac{e}{2m} \vec{S} , \quad \vec{S} \equiv \frac{1}{2} \vec{\sigma}$$
(8)

Hint: You can make use of the following:

- $(\vec{\sigma} \cdot \vec{a})(\vec{\sigma} \cdot \vec{b}) = \vec{a} \cdot \vec{b} + i\vec{\sigma} \cdot (\vec{a} \times \vec{b})$, in the case where $[\vec{a}, \vec{\sigma}] = [\vec{b}, \vec{\sigma}] = 0$
- $\vec{\nabla} \times (\vec{A}\psi) + \vec{A} \times (\vec{\nabla}\psi) = (\vec{\nabla} \times \vec{A})\psi.$
- 3. What is the classical prediction of the gyromagnetic ratio g for an orbital angular momentum? Do you know few experiments where this Landé factor is essential to explain observations?
- 4. *Bonus.* Do you know experiments where the Landé factor measurement is inconsistent with the Dirac equation prediction? Do you know if this is theoretically understood ?

(2 points)